Quantifying Proton-Bound Heterodimer Association Energies from Drift Time Shifts

Previously, we reported an approach to quantify the energetics of association between neutral drift gas modifiers and two common chemical warfare agent degradation species by a combination of experimental drift time shift data as well as computational modeling in collaboration with Chris Hogan at the University of Minnesota. As a continuation of this research in conjunction with Dr. Hogan, we are pleased to report the acceptance of our article for publication in The Journal of Physical Chemistry A entitled, “Deducing Proton-Bound Heterodimer Association Energies from Shifts in Ion Mobility Arrival Time Distributions.” This report describes the Gibbs free energy, enthalpy, and entropy changes as propanol is dimerized with a homologous series of alkylphosphonic acids (methyl-, ethyl-, and propylphosphonic acids) and its conformation with the Kelvin-Thomson-Raoult model.

Bookmark the permalink.

Comments are closed.