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* Makes a few assumptions regarding ion- J— >
neutral interactions ~—

« Collisions are instantaneous
 lon-ion interactions are negligible
« There is no ion-neutral clustering
 lons are at equilibrium

E. Mason, E. McDaniel. Transport Properties of lons in Gases. Wiley, 1988, ASMS 2010 Reprint
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GAS PHASE ION CLUSTERING  *
* Initial interpretations focused on T J ULW

simplified assumptions related to 28- |
simple hetero- and homodimers. |
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 Driven by observations of m/z clusters
and peak tailing. O'S_h

« Stochastic degradation
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This work is aimed at complementing the work at low pressures conducted 0O 2 4 6 8 10 12 14

by Armentrout, Kebarle, Bowers, Castleman, Ervin, Maut-ner, and a range of Drift Time (ms)
other researchers making precise gas-phase clustering measurements.




REACTION QUOTIENT > K

The reaction favors the reactants
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PEAK FRONTING AND CLUSTER
E Dimer lons produced I
PROPERTIES LT |
* R.G. Ewing et al. determined the rate : . X
constants for the decomposition of |7 | G
DMP proton bound dimer. o e mm.le} o
» Jazan et al. studied the rate constants R e e
for the formation of DMP, DMMP and [‘
MIBK proton-bound dimer |
» Grimsrud probed the clustering |
Interactions with DMP and water using i
A
Jazan, E., Tabrizchi, M. Chem Phys, 2009, 355. E ; '
Ewing, R.G., Eiceman, G.A., Harden, C.S. and Stone, J.A. IntJ. Mass Mobility spectra of DMP with 5.0 cm drift length: 353K, 5
Spectrom, 2006, 255. ppmv, water vapor. Gaussian functions fitted to the proton

bound dimer peak is shown 7



Instead of focusing just on rates of decay...

Can we develop a method that probes gas-
phase equilibrium using peak location?



IMS-ION TRAP MODIFIER EXPERIMENT

* Integrated Faraday plate for direct ion current measurements.
* Frequency encoded mobility spectra to enhance duty cycle
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ENHANCED SELECTIVITY FOR CWA
DEGRADATION PRODUCTS

25 —

 Under traditional IMS |
conditions MPA and DMMP
are unresolved in the
mobility domain.
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The goal is to guantitatively
describe the shift and not
simply catalog the

phenomena. | . . . | . .
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EXPERIMENTAL PROCEDURE

 Vary the gas-phase concentration of
the clustering vapor

* Monitor the degree of the shift relative
to the homogeneous buffer gas.

* For each desired temperature: repeat

* Given the number of collisions in IMS
equilibrium conditions are achieved,
however, with respect to the number
of vapor molecules, this quantity can
be varied.
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PHOSPHONIC ACID SHIFTS WITH 2-PROPANOL

« Chemical function groups
of both analyte and
modifier play an important
role

« To what degree are the
mobility shifts functional
group dependent?
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GAS-PHASE CLUSTERING EQUILIBRIA

« At any given time, the number of vapor molecules bound is in a
flux.
* Process of continual sorption and desorption
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DEVELOPMENT OF A QUANTITATIVE SHIFT
MODEL

* lon spends a fraction of time without a vapor molecule bound

(t,) and a fraction with a specific number (g) of vapor molecules
bound (t,) during measurements.

t =L/KE (1)

L= toKoE + t K E + 6IGE + 4+t KE  (2)
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GAS-PHASE CLUSTERING EQUILIBRIA

to

Kops = ?

t
K, + ?11(1 (3) K,ps = lon Mobility (cm? V- s1) (Not Ky)

Where K, and K, are the mobilities of the bare ion and the
lon plus one (1) vapor molecule complex respectively
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GAS-PHASE CLUSTERING EQUILIBRIA

t t
K, .= ?OKO n ?11(1 (3) K,,. = lon Mobility (cm2 V1 1) (Not K..)

By extension, the ratio of times or mobilities is related to the probability of existence

1 exp (— %)
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GAS-PHASE CLUSTERING EQUILIBRIA

t t
K, .= ?OKO n ?11(1 (3) K,,. = lon Mobility (cm2 V1 1) (Not K..)

By extension, the ratio of times or mobilities is related to the probability of existence
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QUANTITATIVE SHIFT MODEL

* For a linear DTIMS, where t; Is the arrival time measured in the
absence of vapor modifier, leads to;

. 1+Sexp(—%)

L 90”1/2 AG
1 _AGg
1+Q 1/ZSexp( _kT)

1”0

| =

1/2

« With 221 _ calculated from the model, plots of ti as a function

1/2
.Q.]_,LLO/ 1

of saturation ratio (S) hence yields, AG.
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MODEL COMPARISON: DMMP AND MPA

« Reasonable agreement is achieved
using the probabilistic model.

 DMMP Is systematically over
estimated at higher saturation

ratios.
« Small contributions from higher order
clustering (g>1)

Analyte lon Experimental Theoretical Reduced
CCS CCS Mass
[MPA+H]'| 91.80 +/- 0.07 91.79 21.73
[MPA+2-Propanol+H]*| 119.12 +/-0.19] 123.57 23.76
[DMMP+H]"| 89.10 +/- 0.07 95.05 22.88
[DMMP+2-Propanol+H]"| 112.21 +/-0.26] 121.48 24 .32
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MODEL COMPARISON: MPA, EPA AND PPA

+ 1+Sexp(——ﬂ;r1) ) .
— = S is a relative parameter
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n is a reference state
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MODEL COMPARISON: MPA, EPA AND PPA

 Deviation at higher saturation -

(upward trend in experimental curve e/ e
relative to the clustering model) . ol

- Suitable agreement between the ...

experimental and clustering model %EZZ T s eonoemen
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EXPERIMENTAL THERMODYNAMIC PROPERTIES

MPA

9.4

9.2 1

In temperature.

g Intercept = 6.92

 Enthalpically and entropically 30 P
favored reaction 5
g 8.4 Intercept = 6.98
« Continued exploration of gas- : PPAz.s

phase mobility shift of homologous -
series of analytes

8.4 — Intercept = 6.73
Slope = 808.1
1

1T(K")
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TRYPTOPHAN SHIFT WITH 2-PROPANOL

OH
N 2
H

m/z 205 [Tryptophan+H]”

* The analyte was 100 uM of L-
tryptophan

* Significant shift is observed
even at 40 pL/hr of the
modifier

* Currently, AG of association
for these clusters is
confounded by the large
temperature range probed.

- o
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SUMMARY AND PATH FORWARD

» By establishing conditions that allow for clustering equilibrium to be maintained,
thermodynamic properties are readily derived from shifts in drift times.

* Not fits to decay slopes

« Sufficient collisions to ensure equilibrium
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SUMMARY AND PATH FORWARD

» By establishing conditions that allow for clustering equilibrium to be maintained,
thermodynamic properties are readily derived from shifts in drift times.

* Not fits to decay slopes

« Sufficient collisions to ensure equilibrium

* The proposed method can capture information on clusters that may not survive traditional
MS interfaces but are amenable to soft ionization sources.

* Allows species previously excluded from HPMS to be probed.
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SUMMARY AND PATH FORWARD

» By establishing conditions that allow for clustering equilibrium to be maintained,
thermodynamic properties are readily derived from shifts in drift times.
* Not fits to decay slopes
« Sufficient collisions to ensure equilibrium

* The proposed method can capture information on clusters that may not survive traditional
MS interfaces but are amenable to soft ionization sources.

* Allows species previously excluded from HPMS to be probed.

» AG indicates that the clustering reactions are favorable
« Reemphasize relationship between AH and AS

« Castin terms of Castlemann results.

« Examine similar systems

Will clustering reactions be favorable in the negative mode?
26



THANK YOU

QUESTIONS?
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