

Interrogating the Extensive Gas-Phase Clustering of Organophosphonate Species via Atmospheric Flow Tube-Mass Spectrometry

Kelsey A. Morrison and Brian H. Clowers Washington State University

Acknowledgments

Funding and Support

This research was based upon work supported by the U.S. Army Research Office under Grant Award Number W911NF1510619.

Clowers Research Group

Overview

- Chemical warfare agents (CWAs)
 - Compound classes common to CWAs
- Atmospheric flow tube-mass spectrometry system
 - Ion source and flow tube
 - Gas-phase ion chemistry and kinetics
- Preliminary surface residue analysis of CWA simulants
- Evaluating stability of dimeric phosphonate cluster
- Implications for further research

CWAs and Their Simulants

- Type of chemical warfare agent, nerve agents, includes a large range of organophosphorus compounds
- Common nerve agent classes:
 - G class: fluorine-containing
 - V class: sulfur-containing

CWAs and Their Simulants

- Hazard of CWAs precludes their use in routine method development
- Need to find close analogs to mimic their attributes
- Organophosphorus CWAs decompose largely through hydrolysis
- Hydrolysis products and compounds related in structure are ideal targets

Munro et al. The sources, fate, and toxicity of chemical warfare agent degradation products. *Environmental Health Perspectives, 107*, **1999**, 933-974.

- Non-contact sampling technique
- Reactant ions produced by dielectric barrier discharge sources while transit time down tube promotes cluster formation with analyte
- Surface analysis sampling methods here included sample deposited on woven glass

1) Ewing et al. *Analytical Chemistry, 85,* **2013**, 389-397. 2) Morrison and Clowers. Characterization of Alkylphosphonic Acid Vapors Using Atmospheric Flow Tube-Ion Trap Mass Spectrometry. *Rapid Comm. Mass Spectrom.*, **2018**. Ahead of print.

1) Ewing et al. Analytical Chemistry, 85, 2013, 389-397. 2) Morrison and Clowers. Characterization of Alkylphosphonic Acid Vapors Using Atmospheric Flow Tube-Ion Trap Mass Spectrometry. Rapid Comm. Mass Spectrom., 2018. Ahead of print.

- Assuming excess of reactant ions, analyte ion quantity can be maximized by increasing t
- Simplest way to increase t is by using flow tube

$$[A^-] = [R^-]_0 [A]kt$$

- **k** = reaction rate constant ($\sim 10^{-9}$ cm³ molecule⁻¹ s⁻¹)
- t = reaction time in seconds
- **[A]** = analyte concentration
- [A⁻] = analyte ion concentration (measured signal)
- $[R^-]_0$ = initial reactant ion concentration (measured signal)

1) Ewing et al. *Analytical Chemistry, 85,* **2013**, 389-397. 2) Morrison and Clowers. Characterization of Alkylphosphonic Acid Vapors Using Atmospheric Flow Tube-Ion Trap Mass Spectrometry. *Rapid Comm. Mass Spectrom.*, **2018**. Ahead of print.

- Both positive and negative analyte ion clusters formed
- Predominant analyte species in negative mode consist of nitrate adducts
- Proton-bound adducts are most common for positive mass spectra, generally no specific reactant ion visible

Morrison and Clowers. Characterization of Alkylphosphonic Acid Vapors Using Atmospheric Flow Tube-Ion Trap Mass Spectrometry. *Rapid Comm. Mass Spectrom.*, **2018**. Ahead of print.

Dialkyl Alkylphosphonates Assessed

Longer Chain Alkoxy Groups

Other Organophosphorus Species Analyzed

- Pinacolyl methylphosphonate (PMP) was included to assess the impact of the free hydroxyl on cluster behavior
- Also useful to include due to high degree of similarity in structure to GD

Simple Quantitative Evaluation: P-C Alkyl Chain

- DMMP, DMEP, and DMPP
- Linear signal gains for 0.1 to 10 µg samples
- Ion current trends upward with increasing alkyl group size.
 - Likely result from change in proton affinity; better able to grab charge

Simple Quantitative Evaluation: Alkoxy Chain

- DEMP monomer and dimer:
 - Quantitatively tractable ion current changes with sample quantity

Simple Quantitative Evaluation: Alkoxy Chain

- In contrast, DIMP showed linear signal increases only for monomer
- Also produced quite low SNR for 0.1 µg sample

Simple Quantitative Evaluation: Lengthen Both Chains

- DEEP structure:
 - All three alkyl chains longer vs DMMP
- Low SNR for 0.1 µg sample compared to all others besides DIMP

Simple Quantitative Evaluation: Influence of OH

- Minimum amount of PMP necessary for even slight signal ~50x greater than for others
 - Lower vapor pressure
 - Hydrogen bonding through OH

Homodimer-H⁺

Some Qualitative Notes: Influence of OH

- PMP capable of forming multimers beyond dimers
 - Three or more in one cluster
 - Singly charged
- Can complicate quantitation by splitting signal

Some Observations from Simple Quantitative Work

- Some species demonstrated favorable signals from both monomers and dimers
- Others worked well from only one ion or ion adduct

Some Observations from Simple Quantitative Work

- Although not all homodimers showed linear signal gains, judicious use of dopants can enhance analysis
 - Selectivity around interferences
 - Select for specific ion chemistry
 - Introduce known mass shift

Some Observations from Simple Quantitative Work

- A first metric is to assess the relative stability of a range of both homodimeric and heterodimeric adducts
 - Catalog structure and stability trends
 - See if more vs less stable functions well as dopant

Why Evaluate Cluster Stability?

- Broad trends in complex stability have been characterized by Meot-Ner for amines and simple organics, but not organophosphorus species
 - Higher bond dissociation energies when the difference in proton affinity between both components is minimized
 - For $-O \cdot H + \cdot O -$ type bonds,

$$\Delta H = 127 - 0.4 \Delta PA \text{ (kJ/mol)}$$

M.M. Meot-Ner, The Ionic Hydrogen Bond and Ion Solvation. 1. NH+•••O, NH+•••O, and OH+•••O Bonds. Correlations with Proton Affinity. Deviations due to Structural Effects, J. Am. Chem. Soc. 106 (1984) 1257–1264.

Using Survival Yield Analysis on Clusters

- Survival yield analysis
 - Energy-resolved fragmentation mass spectra
 - Metric of *relative* cluster stability
 - Stability of cluster at each collision energy:

100*precursor

precursor+fragments

Holmes, Huizen, and Burgers. Proton affinities and ion enthalpies. European Journal of Mass Spectrometry, doi: 10.1177/1469066717728451

Using Survival Yield Analysis on Clusters

- Survival yield analysis
 - Energy-resolved fragmentation mass spectra
 - Metric of *relative* cluster stability
 - Stability of cluster at each collision energy

Holmes, Huizen, and Burgers. Proton affinities and ion enthalpies. *European Journal of Mass Spectrometry*, doi: 10.1177/1469066717728451

Homodimer Trends: Dialkyl Alkylphosphonates

Homodimer Trends: Dialkyl Alkylphosphonates

Homodimer Trends: Dialkyl Alkylphosphonates

Heterodimer Trends: Impact of Alkyl Chain

Heterodimer Trends: Impact of Alkyl Chain

Heterodimer Trends: Impact of Alkyl Chain

Forming Heterodimers with PMP

 Use of PMP in heterodimer clustering tends to slightly enhance the dimers' stability in SY analysis

Findings Summary

- Microgram and sub-microgram quantities of dried phosphonate samples elicit largely linear signal changes with increase in analyte amount
- Using alkyl chain length as an approximation of proton affinity, apparent trend is greater homodimer stability for higher PA dialkyl alkylphosphonate species
- Greater differences in assumed relative PA tended to yield less stable clusters
- Presence of hydroxyl appears to strengthen cluster interactions

Future Directions

- Perform SY analysis on phosphonate species as heterodimers with compounds of known proton affinity
 - Apply kinetic method to obtain tentative proton affinity estimates
- Assess linearity and sensitivity for phosphonate quantitation by monitoring the dopant-analyte signal
- Pursue AFT-MS analysis of additional compound classes